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Abstract— Optimal control synthesis in stochastic systems
with respect to quantitative temporal logic constraints can
be formulated as linear programming problems. However,
centralized synthesis algorithms do not scale to many practical
systems. To tackle this issue, we propose a decomposition-based
distributed synthesis algorithm. By decomposing a large-scale
stochastic system modeled as a Markov decision process into
a collection of interacting sub-systems, the original control
problem is formulated as a linear programming problem with
a sparse constraint matrix, which can be solved through
distributed optimization methods. Additionally, we propose a
decomposition algorithm which automatically exploits, if it
exists, the modular structure in a given large-scale system.
We illustrate the proposed methods through robotic motion
planning examples.

I. INTRODUCTION

For many systems, temporal logic formulas are used to
describe desirable system properties such as safety, stability,
and liveness [1]. Given a stochastic system modeled as a
Markov decision process (MDP), the synthesis problem is
to find a policy that achieves optimal performance under a
given quantitative criterion regarding given temporal logic
formulas. For instance, the objective may be to find a
policy that maximizes the probability of satisfying a given
temporal logic formula. In such a problem, we need to
keep track of the evolution of state variables that capture
system dynamics as well as predicate variables that encode
properties associated with the temporal logic constraints [2],
[3]. As the number of states grows exponentially in the
number of variables, we often encounter large MDPs, for
which the synthesis problems are impractical to solve with
centralized methods. The insight for control synthesis of
large-scale systems is to exploit the modular structure in a
system so that we can solve the original problem by solving
a set of small subproblems.

In literature, distributed control synthesis methods are pro-
posed in the pioneering work for MDPs with discounted re-
wards [4], [5]. The authors formulate a two-stage distributed
reinforcement learning method: The first stage constructs and
solves an abstract problem derived from the original one, and
the second stage iteratively computes parameters for local
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problems until the collection of local problems’ solutions
converge to one that solves the original problem. Recently,
alternating direction method of multipliers (ADMM) is com-
bined with a sub-gradient method into planning for average-
reward problems in large MDPs in [6]. However, the method
in [6] applies only when some special conditions are satisfied
on the costs and transition kernels. Alternatively, hierarchical
reinforcement learning introduces action-aggregation and
action-hierarchies to address the planning problems with
large MDPs [7]. In action-aggregation, a micro-action is a
local policy for a subset of states and the global optimal
policy maps histories of states into micro-actions. However,
it is not always clear how to define the action hierarchies and
how the choice of hierarchies affects the optimality in the
global policy. Additionally, the aforementioned methods are
in general difficult to implement and cannot handle temporal
logic specifications.

For synthesis problems in MDPs with quantitative tem-
poral logic constraints, centralized methods and tools [3],
[8] are developed and applied to control design of stochastic
systems and robotic motion planning [9]–[11]. Since central-
ized algorithms are based on either value iteration or linear
programming, they inevitably hit the barrier of scalability
and are not viable for large MDPs. In this paper, we develop
a distributed optimization method for large MDPs subject to
temporal logic contraints. We first introduce a decomposition
method for large MDPs and prove a property in such a
decomposition that supports the application of the proposed
distributed optimization. For a subclass of MDPs whose
graph structures are Planar graphs1, we introduce an efficient
decomposition algorithm that exploits the modular structure
for the underlying MDP caused by loose coupling between
subsets of states and its constituting components. Then,
given a decomposition of the original system, we employ
a distributed optimization method called block splitting al-
gorithm [12] to solve the planning problem with respect to
discounted-reward objectives in large MDPs and average-
reward objectives in large ergodic MDPs 2. Comparing to
two-stage methods in [5], [6], [13], our method concurrently
solves the set of sub-problems and penalizes solutions’
mismatches in one step during each iteration, and is easy
to implement. Since the distributed control synthesis is
independent from the way how a large MDP is decomposed,
any decomposition method can be used. Lastly, we extend

1As an example, gridworld MDPs have Planar graph structure, as the
robot in a gridworld only transits to its adjacent cells.

2A Markov chain is ergodic if it is possible to eventually get from every
state to every other state with positive probability. An MDP is ergodic if
the Markov chain induced from any policy is ergodic.
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the method to solve the synthesis problems for MDPs with
two classes of quantative temporal logic objectives. Through
case studies we investigate the performance and effectiveness
of the proposed method.

II. PRELIMINARIES

Let Σ be a finite set. Let Σ∗,Σω be the set of finite and
infinite words over Σ. card(Σ) is the cardinality of the set
Σ. A probability distribution on a finite set S is a function
D : S → [0, 1] such that

∑
s∈S D(s) = 1. The support of

D is the set Supp(D) = {s ∈ S | D(s) > 0}. The set of
probability distributions on a finite set S is denoted D(S).
Markov decision process: A Markov decision process
(MDP) M = 〈S,A, u0, P 〉 consists of a finite set S of states,
a finite set A of actions, an initial distribution u0 ∈ D(S)
of states, and a transition probability function P : S ×A→
D(S) that for a state s ∈ S and an action a ∈ A gives
the probability P (s, a)(s′) of the next state s′. Given an
MDP M we define the set of actions enabled at state s as
A(s) = {a ∈ A | ∃s′ ∈ S, P (s, a)(s′) > 0}. The cardinality
of the set {(s, a) | s ∈ S, a ∈ A(s)} is the number of state-
action pairs in the MDP.

A path is an infinite sequence s0s1 . . . of states such that
for all i ≥ 0, there exists a ∈ A, si+1 ∈ Supp(P (si, a)).
A policy is a function f : S∗ → D(A) that, given a finite
state sequence representing the history, chooses a probability
distribution over the set A of actions. Policy f is memoryless
if it only depends on the current state, i.e., f : S → D(A).
Once a policy f is chosen, an MDP M is reduced to a
Markov chain, denoted Mf . We denote by Xi and θi the
random variables for the i-th state and the i-th action in this
chain Mf . Given a policy f , for a measurable function φ
that maps paths into reals, let Efu0

[φ] (resp. Efs [φ]) be the
expected value of φ when the policy f is used given u0 being
the initial distribution of states (resp. s being the initial state).

Given an MDP M , a reward function R : S×A→ R and
a policy f , let γ be a discounting factor, the discounted-
reward value is defined as Valfγ(u0) = Valfγ(s) · u0(s)

where Valfγ(s) = Efs (
∑∞
n=0 γ

nR(Xn, θn)); the average-
reward value is defined as Valf (u0) = Valf (s) ·u0(s) where
Valf (s) = limn→∞

1
nE

f
s [
∑n
k=0R(Xk, Ak)]. A discounted-

reward (resp. an average-reward) problem is, for a given
initial state distribution, to obtain a policy that maximizes the
discounted-reward value (resp. average-reward value). For
discounted-reward (average-reward) problems, the optimal
value can be attained by memoryless policies [14].

A solution to the discounted-reward problem can be found
by solving the linear programming (LP) problem:

max
x∈Rm

+

∑
s∈S

∑
a∈A(v)

x(s, a) ·R(s, a) (1a)

subject to∑
a∈A(s)

x(s, a)− γ ·
∑
s′∈S

∑
a′∈A(s′)

x(s′, a′) · P (s′, a′)(s)

= u0(s),∀s ∈ S, (1b)

where m is the total number of state-action pairs in the
MDP, Rm+ is the non-negative orthant of Rm, and variable
x(s, a) can be interpreted as the expected discounted time
of being in state s and taking action a. Once the LP
problem in (1) is solved, the optimal policy is obtained as
f(s, a) = x(s,a)∑

a′∈A(s) x(s,a
′) and the objective function’s value

is the optimal discounted-reward value under policy f given
the initial distribution u0 of states.

In an ergodic MDP, the average-reward value is a constant
regardless of the initial state distribution [15]. We obtain an
optimal policy for an average-reward problem by solving the
LP problem

max
x∈Rm

+

∑
s∈S

∑
a∈A(s)

x(s, a) ·R(s, a) (2a)

subject to∑
a∈A(s)

x(s, a)−
∑
s′∈S

∑
a′∈A(s′)

x(s′, a′) · P (s′, a′)(s) = 0,

∀s ∈ S, (2b)∑
s∈S

∑
a∈A(s)

x(s, a) = 1, (2c)

where x(s, a) is understood as the long-run fraction of time
that the system is at state s and the action a is taken. Once the
LP problem in (2) is solved, the optimal policy is obtained as
f(s, a) = x(s,a)∑

a′∈A(s) x(s,a
′) . The optimal objective value is the

optimal average-reward value and is the same for all states.

Distributed optimization: As a prelude to the distributed
synthesis method developed in section IV, now we describe
the alternating direction method of multipliers (ADMM) [16]
for the generic convex constrained minimization problem
minz∈C g(z) where function g is closed proper convex and
set C is closed nonempty convex. In iteration k of the
ADMM algorithm the following updates are performed:

zk+1/2 := proxg(z
k − z̃k), (3a)

zk+1 := ΠC(zk+1/2 + z̃k), (3b)

z̃k+1 := z̃k + zk+1/2 − zk+1, (3c)

where zk+1/2 and z̃k are auxiliary variables, ΠC is
the (Euclidean) projection onto C, and proxg(v) =
arg minx

(
g(x) + (ρ/2)‖x− v‖22

)
is the proximal operator

of g with parameter ρ > 0. The algorithm handles separately
the objective function g in (3a) and the constraint set C in
(3b). In (3c) the dual update step coordinates these two steps
and results in convergence.

Temporal logic: Linear temporal logic (LTL) formulas are
defined by: φ := p | ¬φ | φ1 ∨ φ2 | ©φ | φ1Uφ2, where
p ∈ AP is an atomic proposition, and© and U are temporal
modal operators for “next” and “until”. Additional temporal
logic operators are derived from basic ones: ♦ϕ := true Uϕ
(eventually) and �ϕ := ¬♦¬ϕ. Given an MDP M , let AP
be a finite set of atomic propositions, and a function L :
S → 2AP be a labeling function that assigns a set of atomic
propositions L(s) ⊆ AP to each state s ∈ S that are valid at
the state s. L can be extended to paths in the usual way, i.e.,
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L(sρ) = L(s)L(ρ) for s ∈ S, ρ ∈ Sω . A path ρ = s0s1 . . . ∈
Sω satisfies a temporal logic formula ϕ if and only if L(ρ)
satisfies ϕ. In an MDP M , a policy f induces a probability
distribution over paths in Sω . The probability of satisfying
an LTL formula ϕ is the sum of probabilities of all paths
that satisfy ϕ in the induced Markov chain Mf .

Problem 1: Given an MDP M and an LTL formula ϕ,
synthesize a policy that optimizes a quantitative performance
measure with respect to the formula ϕ in the MDP M .
One quantitative performance measure we study is the prob-
ability of satisfying a temporal logic formula. We also con-
sider the expected frequency of satisfying certain recurrent
properties specified in an LTL formula.

By formulating a product MDP with the original MDP
and an automaton representing the temporal logic speci-
fication (see details in Section V), it can be shown that
Problem 1 with different quantitative performance measures
can be formulated through pre-processing as special cases
of discounted-reward and average-reward problems [3], [17].
Thus, in the following, we first introduce decomposition-
based distributed synthesis methods for large MDPs with
discounted-reward and average-reward criteria. Then, we
show the extension for solving MDPs with quantitative
temporal logic constraints.

III. DECOMPOSITION OF AN MDP

A. Decomposition and its property

To exploit the modular structure of a given MDP, the
initial step is to decompose the state space into small subsets
of states, each of which can then be related to a small
problem. In this section, we introduce some terminologies
in decomposition of MDPs from [5].

Given an MDP M = 〈S,A, u0, P 〉, let Π be any partition
of the state set S. That is, Π = {S1, . . . , SN} ⊆ 2S , ∅ /∈ Π,
Si ∩ Sj = ∅ when i 6= j and

⋃N
i=1 Si = S. A set in Π

is called a region. The periphery of a region Si is a set
of states outside Si, each of which can be reached with a
non-zero probability by taking some action from a state in
Si. Formally, Periphery(Si) = {s′ ∈ S \ Si | ∃(s, a) ∈
Si ×A,P (s, a)(s′) > 0}.

Let K0 =
⋃N
j=1 Periphery(Sj). Given a region Si ∈ Π,

we call Ki = Si \ K0 the kernel of Si. We denote mi

the number of state-action pairs restricted to Ki, for each
i = 0, . . . , N . That is, mi is the cardinality of the set
{(s, a) | s ∈ Ki, a ∈ A(s)}. We call the partition {Ki |
0 ≤ i ≤ N} a decomposition of M . The following property
of a decomposition is exploited in distributed optimization.

Lemma 1: Given a decomposition {Ki, i = 0, 1, . . . , N}
obtained from partition Π = {S1, . . . , SN}, for a state s ∈
Ki where i 6= 0, if there is a state s′ and an action a such
that P (s′, a)(s) 6= 0, then either s′ ∈ K0 or s′ ∈ Ki.

Proof: Suppose s′ /∈ K0 and s′ /∈ Ki, then it must
be the case that s′ ∈ Kj for some j 6= 0 and j 6= i. Since
from state s′ ∈ Sj , after taking action a, the probability
of reaching s ∈ Si is non-zero, we can conclude that
s ∈ Periphery(Sj), which implies s ∈ K0. The implication

contradicts the fact that s ∈ Ki since K0 ∩Ki = ∅. Hence,
either s′ ∈ Ki or s′ ∈ K0.
Example: Consider the MDP in Figure 1, which is taken
from [18]. The shaded region shows a partition Π =
{S1 = {s4, s5, s6}, S2 = {s0, s1, s2, s3, s7}} of the state
space. Then, Periphery(S1) = {s2, s7} and Periphery(S2) =
{s4}. We obtain a decomposition of M as K0 =
∪2i=1Periphery(Si) = {s2, s4, s7}, K1 = S1\K0 = {s5, s6},
and K2 = S2 \K0 = {s0, s1, s3}. It is observed that state s5
can only be reached with non-zero probabilities by actions
taken from states s4 and s6.

S1 S2

s4 s0

start

s1

s5 s2 s3

s6 s7

α, 0.25

α
, 0
.7

5

β, 0.67

α, 1

β, 0.33

α, 0.5

α, 0.39
α, 0.11

α, 1

β, 0.33

β, 0.67

α, 1 α, 1

α, 0.4

α, 0.6

α, 0.5
α, 0.5

Fig. 1: Example of an MDP with states Q = {si, i =
0, . . . , 7}, actions A = {α, β}, and transition probability
function P as indicated.

B. A decomposition method for a subclass of MDPs

Various methods have been developed to derive a decom-
position of an MDP, for example, decompositions based
on partitioning the state space of an MDP according to
the communicating classes in the induced graph (defined in
the following) of that MDP (see a survey in [13]). For the
distributed synthesis method developed in this paper, it will
be shown later in Section IV that the number of state-action
pairs and the number of states in Ki are the number of
variables and the number of constraints in a sub-problem,
respectively. Thus, we prefer a decomposition that meets
one simple desirable property: For each i = 0, 1, . . . , N ,
the number mi of state-action pairs in Ki is small in the
sense that the classical linear programming algorithm can
solve an MDP with state-action pairs of this size in a
reasonable amount of time given the computational capacity
of a general computer. Next, we propose a method that
generates decompositions which meet the aforementioned
desirable property for a subclass of MDPs. For an MDP in
this subclass, its induced graph is Planar 3. It can be shown
that MDPs derived from classical gridworld examples, which
have many practical applications in robotic motion planning,
are in this subclass.

We start by relating an MDP with a directed graph.
Definition 1: The labeled digraph induced from an MDP

M = 〈S,A, u0, P 〉 is a tuple G = 〈S,E〉 where S is a set
of nodes, and E ⊆ S×A×S is a set of labeled edges such
that (s, a, s′) ∈ E if and only if P (s, a)(s′) > 0.

3A graph is planar if it can be drawn in the plane in such a way that no
two edges meet each other except at a vertex to which they are incident.
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Let n = card(S) be the total number of nodes in the graph.
A partition of states in the MDP gives rise to a partition of
nodes in the graph. Given a partition Π and a region Si ∈ Π,
a node is said to be contained in Si if some edge of the region
is incident to the node [20]. A node contained in more than
one regions is called a boundary node. That is, s ∈ Si is a
boundary node if and only if there exists (s, a, s′) ∈ E or
(s′, a, s) ∈ E with s′ /∈ Si. Formally, the boundary nodes
of Si are Bi = Ini ∪ Outi where Ini = {s ∈ Si | ∃j 6=
i, s′ ∈ Sj , a ∈ A(s′), and (s′, a, s) ∈ E} and Outi = {s ∈
Si | ∃s′ ∈ S \ Si, a ∈ A(s), and (s, a, s′) ∈ E}. We define
B0 =

⋃N
i=1Bi. Note that since

⋃N
i=1 Ini = K0, K0 ⊆ B0.

We use the number of boundary nodes as an upper bound
on the size of the set K0 of states.

Definition 2: [20] An r-division of an n-node graph is a
partition of nodes into O(n/r) subsets, each of which have
O(r) nodes and O(

√
r) boundary nodes.

Reference [20] shows an algorithm that divides a planar
graph of n vertices into an r-division in O(n log n) time.

Lemma 2: Given a partition Π of an MDP with n states
obtained with a r-division the induced graph, the number of
states in K0 is upper bounded by O(n/

√
r) and the number

of states in Ki is upper bounded by O(r).
Proof: Since each boundary node is contained in at most

three regions and at least one region by the property of
an r-division [20], the total number of boundary nodes is
O(
√
r · nr ) = O(n/

√
r). The number of states in Ki is upper

bounded by the size of Si, which is O(r).
To obtain a decomposition, the user specifies an approxi-

mately upper bound on the number of variables for all sub-
problems. Then, the algorithm decides whether there is an
r-division for some r that gives rise to a decomposition that
has the desirable property.

Remark 1: A decomposition may be given or obtained
straight-forwardly by exploiting the existing modular struc-
ture of the system. One of the future direction is to develop
heuristic for decomposing graphs which are not planar. Note
that a decomposition obtained from the system structure or
by heuristics may not meet the desirable property for the dis-
tributed synthesis method, the proposed method still applies
as long as each subproblem derived from that decomposition
(see Section IV-C) can be solved given the limitation in
memory and computational capacities.

IV. DISTRIBUTED SYNTHESIS: DISCOUNTED-REWARD
AND AVERAGE-REWARD PROBLEMS

In this section, we show that under a decomposition, the
original LP problem for a discounted-reward or average-
reward can be formulated into one with a sparse constraint
matrix. Then, we employ block-splitting algorithm in [12]
for solving the LP problem in a distributed manner.

A. Discounted-reward case

Given a decomposition {Ki | i = 0, 1, . . . , N} of an
MDP, let xi be a vector consisting of variables x(s, a) for
all s ∈ Ki with all actions enabled from s. Let ιi : Ki →

{1, . . . , card(Ki)} be an index function. The constraints in
(1b) can be written as: For each s ∈ K0,∑

a∈A(s)

x(s, a) = u0(s)+

γ ·
N∑
i=0

∑
s′∈Ki

∑
a′∈A(s′)

x(s′, a′) · P (s′, a′)(s), (4)

and for each s ∈ Ki, i = 1, . . . , N ,∑
a∈A(s)

x(s, a) = u0(s)+

γ ·
( ∑
s′∈K0

∑
a′∈A(s′)

x(s′, a′) · P (s′, a′)(s)

+
∑
s′∈Ki

∑
a′∈A(s′)

x(s′, a′) · P (s′, a′)(s)
)
. (5)

Recall that, in Lemma 1, we have proven that each s ∈ Ki

with i 6= 0 can only be reached with non-zero probabilities
from states in K0 and Ki. As a result, for each state s in
Ki with i 6= 0 and each action a ∈ A(s), the constraint
on variable x(s, a) is only related with variables in xi and
x0. Let x = (x0, x1, . . . , xN ). We denote the number of
variables in xi by mi and the number of states in the set Ki

by ni. Let m =
∑N
i=0mi. The LP problem in (1) is then

min
x∈Rm

+

N∑
j=0

cTj xj , subject to Ax = b, (6)

where cTj xj =
∑
s∈Kj

∑
a∈A(s)−R(s, a)x(s, a),

A =


A00 A01 A02 . . . A0N

A10 A11

A20 A22 0
... 0 . . .

AN0 ANN

 , b =


b0
b1
b2
...
bN

 ,
and bi ∈ Rni where bi(k) = u0(s) if ιi(s) = k. The
transformation from (4) and (5) to (6) and the derivation of
Aij from (5) is straightforward by rewriting the constraints
and we omit the detail.

B. Average-reward case

For an ergodic MDP, the constraints in the LP problem
of maximizing the average reward, described by (2b), can be
rewritten in the way just as how (1b) is rewritten into (4) and
(5) for the discounted-reward problem. The difference is that
for the average-reward case, we let γ = 1 and replace u0(s)
with 0, for all s ∈ S, in (4) and (5). An additional constraint
for the average-reward case is that

∑
s∈S

∑
a∈A(s) x(s, a) =

1. Hence, for an average-reward problem in an ergodic MDP,
the corresponding LP problem in (2) is formulated as

min
x∈Rm

+

N∑
j=0

cTj xj , subject to
[
1T

A

]
x =

[
1
0

]
(7)

where 1T is a row vector of m ones, cTj xj =∑
s∈Kj

∑
a∈A(s)−R(s, a)x(s, a) and the block-matrix A
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has the same structure as of that in the discounted case with
γ = 1. We can compactly write the constraint in (7) as
A′x = b where A′ is a sparse constraint matrix similar in
structure to the matrix A in the discounted-reward case.

For an average-reward case, we need to satisfy the con-
straint 1Tx = 1 in (7). This constraint leads to slow conver-
gence and policies with large infeasibility measures in dis-
tributed optimization. To handle this issue, we approximate
average reward with discounted reward [23]: For ergodic
MDPs, the discounted accumulated reward, scaled by 1− γ,
is approximately the average reward. Further, if 1

1−γ is large
compared to the mixing time [15] of the Markov chain, then
the policy that optimizes the discounted accumulated reward
with the discounting factor γ can achieve an approximately
optimal average reward.

C. Distributed optimization algorithm

We solve the LP problems in (6) and (7) by employing the
block splitting algorithm based on ADMM in [12]. We only
present the algorithm for the discounted-reward case in (6).
The extension to the average-reward case is straight-forward.

First, we introduce new variables yi and let fi(yi) =
I{bi}(yi), where for a convex set C, IC is a function defined
by IC(x) = 0 for x ∈ C, IC(x) = ∞ for x /∈ C. Then,
adding the term fi(yi) into the objective function enforces
yi = bi. Let gi(xi) = cTi xi + IRmi

+
(xi). The term IRmi

+
(xi)

enforces that xi is a non-negative vector. We rewrite the LP
problem in (6) as follows.

min
x,y

N∑
i=0

fi(yi) +

N∑
i=0

gi(xi)

subject to y0 =

N∑
i=0

A0ixi and for i = 1, . . . , N,

yi = Ai0x0 +Aiixi.

(8)

With this formulation, we modify the block splitting al-
gorithm in [12] to solve (8) in a parallel and distributed
manner (see the Appendix for the details). The algorithm
takes parameters ρ, εrel and εabs: ρ > 0 is a penalty
parameter to ensure the constraints are satisfied, εrel > 0
is a relative tolerance and εabs > 0 is an absolute tolerance.
The choice of εrel and εabs depends on the scale of variable
values. In synthesis of MDPs, εrel and εabs may be chosen
in the range of 10−2 to 10−6. The algorithm is ensured to
converge with any choice of ρ and the value of ρ may affect
the convergence rate. Reference [16] proposes a method that
updates parameter ρ for each iteration, for improving the
convergence in practice. The readers are referred to [16] for
more details on the choice of ρ, εabs and εrel and how these
values affect the bound on the objective suboptimality and
the convergence rate.

V. EXTENSION TO QUANTITATIVE TEMPORAL LOGIC
CONSTRAINTS

We now extend the distributed control synthesis methods
for MDPs with discounted-reward and average-reward crite-

ria to solve Problem 1 in which quantitative temporal logic
constraints are enforced.

A. Maximizing the probability of satisfying an LTL specifi-
cation

Preliminaries Given an LTL formula ϕ as the system
specification, one can always represent it by a deterministic
Rabin automaton (DRA) Aϕ = 〈Q, 2AP , T, I,Acc〉 where
Q is a finite state set, 2AP is the alphabet, I ∈ Q is
the initial state, and T : Q × 2AP → Q the transition
function. The acceptance condition Acc is a set of tuples
{(Ji, Hi) ∈ 2Q × 2Q | i = 1, . . . , `}. The run for an infinite
word w = σ0σ1 . . . ∈ (2AP)ω is the infinite sequence of
states q0q1 . . . ∈ Qω where q0 = I and qi+1 = T (qi, σi) for
i ≥ 0. A run ρ = q0q1 . . . is accepted in Aϕ if there exists
at least one pair (Ji, Hi) ∈ Acc such that Inf(ρ) ∩ Ji = ∅
and Inf(ρ) ∩ Hi 6= ∅ where Inf(ρ) is the set of states that
appear infinitely often in ρ.

Given an MDP M = 〈S,A, u0, P 〉 augmented with a set
AP of atomic propositions and a labeling function L : S →
2AP , one can compute the product MDP M = M nAϕ =
〈V,A,∆, v0,Acc〉 with the components defined as follows:
V = S × Q is the set of states. A is the set of actions.
The initial probability distribution of states is µ0 : V →
[0, 1] such that given v = (s, q) with q = T (I, L(s)), it is
that µ0(v) = u0(s). ∆ : V × A → D(V ) is the transition
probability function. Given v = (s, q), σ, v′ = (s′, q′) and
q′ = T (q, L(s′)), let ∆(v, σ)(v′) = P (s, σ)(s′). The Rabin
acceptance condition is Acc = {(Ĵi, Ĥi) | Ĵi = S×Ji, Ĥi =
S ×Hi, i = 1, . . . , `}.

By construction, a path ρ = v0v1 . . . ∈ V ω satisfies the
LTL formula ϕ if and only if there exists i ∈ {1, . . . , `},
Inf(ρ) ∩ Ĵi = ∅ and Inf(ρ) ∩ Ĥi 6= ∅. To maximize the
probability of satisfying ϕ, the first step is to compute the
set of end components inM, each of which is a pair (W, f)
where W ⊆ V is non-empty and f : W → 2A is a
function such that for any v ∈ W , for any a ∈ f(v),∑
v′∈W ∆(v, a)(v′) = 1 and the induced directed graph

(W,→f ) is strongly connected. Here, v →f v
′ is an edge in

the graph if there exists a ∈ f(v), ∆(v, a)(v′) > 0. An
end component (W, f) is accepting if W ∩ Ĵi = ∅ and
W ∩ Ĥi 6= ∅ for some i ∈ {1, . . . , `}.

Let the set of accepting end components (AEC)s inM be
AEC(M) and the set of accepting end states be C = {v |
∃(W, f) ∈ AEC(M), v ∈ W}. Once we enter some state
v ∈ C, we can find an AEC (W, f) such that v ∈ W , and
initiate the policy f such that for some i ∈ {1, . . . , `}, states
in Ĵi will be visited a finite number of times and some state
in Ĥi will be visited infinitely often.

Formulating the LP problem An optimal policy that max-
imizes the probability of satisfying the specification also
maximizes the probability of hitting the set of accepting
end states C. Reference [21] develops GPU-based parallel
algorithms which significantly speed up the computation of
end components for large MDPs. After computing the set of
AECs, we formulate the following LP problem to compute
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the optimal policy using the proposed decomposition and
distributed synthesis method for discounted-reward cases.

Given a product MDP M = 〈V,A,∆, µ0,Acc〉 and the
set C of accepting end states, the modified product MDP is
M̃ = 〈(V \C)∪{sink}, A, ∆̃, µ̃0, R〉 where (V \C)∪{sink}
is the set of states obtained by grouping states in C as a
single state sink. For all a ∈ A, ∆̃(sink, a)(sink) = 1 and
∆̃(v, a)(sink) =

∑
v′∈C ∆(v, a)(v′). The initial distribution

µ̃0 of states is defined as follows: For v ∈ V \ C, µ̃0(v) =
µ0(v), and µ̃0(sink) =

∑
v∈C µ0(v). The reward function

R : ((V \ C) ∪ {sink})×A→ R is defined such that for all
v that is not sink, R(v, a) =

∑
v′∈(V \C)∪{sink} ∆̃(v, a)(v′) ·

1{sink}(v
′) where 1X(v) is the indicator function that outputs

1 if and only if v ∈ X and 0 otherwise. For any action
a ∈ A(sink), R(sink, a) = 0.

The discounted reward with γ = 1 from state v in the
modified product MDP M̃ is the probability of reaching a
state in C from v under policy f in the product MDP M.
Hence, with a decomposition ofM, the proposed distributed
synthesis method for discounted-reward problems can be
used to compute the policy that maximizes the probability
of satisfying a given LTL specification.

B. Average reward under Büchi acceptance conditions

Preliminaries Consider a temporal logic formula ϕ that can
be expressed as a deterministic Büchi automaton (DBA)
Aϕ = 〈Q, 2AP , T, I, Fϕ〉 where Q, 2AP , T, I are defined
similar to a DRA and Fϕ ⊆ Q is a set of accepting states.
A run ρ is accepted in Aϕ if and only if Inf(ρ) ∩ Fϕ 6= ∅.
Given an MDP M = 〈S,A, u0, P,AP, L〉 and a DBA Aϕ =
〈Q, 2AP , T, q0, Fϕ〉, the product MDP with Büchi objective
is M = M n Aϕ = 〈V,A,∆, µ0, F 〉 where components
V,A,∆, µ0 are obtained similarly as in the product MDP
with Rabin objective. The difference is that F ⊆ S × Fϕ
is the set of accepting states. A path ρ = v0v1 . . . ∈ V ω

satisfies the LTL formula ϕ if and only if Inf(ρ) ∩ F 6= ∅.
Formulating the LP problem For a product MDP M
with Büchi objective, we aim to synthesize a policy that
maximizes the expected frequency of visiting an accepting
state in the product MDP M = M n Aϕ. This type of
objectives ensures some recurrent properties in the temporal
logic formula are satisfied as frequently as possible. For
example, one such objective can be requiring a mobile robot
to maximize the frequency of visiting some critical regions.

This type of objectives can be formulated as an average-
reward problem in the following way: Let the reward function
R : V ×A→ R be defined by R(v, a) =

∑
v′∈V ∆(v, a)(v′)·

1F (v′). By definition of the reward function, the optimal
policy with respect to the average-reward criterion is the one
that maximizes the frequency of visiting a state in F . If the
product MDP is ergodic, we can then solve the resulting
average-reward problem by the distributed optimization al-
gorithm with a decomposition of product MDP M.

VI. CASE STUDIES

We demonstrate the method with three robot motion plan-
ning examples. All the experiments were run on a machine

with Intel Xeon 4 GHz, 8-core CPU and 64 GB RAM
running Linux. The distributed optimization algorithm is
implemented in MATLAB. The decomposition and other
operations are implemented in Python.
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Fig. 2: (a) A fraction of a m×n gridworld. The dash arrow
represents that if the robot takes action ‘N’, there are non-
zero probabilities for it to arrive at NW, N, and NE cells.
(b) A 20 × 20 gridworld. A natural partition of state space
using the walls gives rise to K0,K1,K2,K3,K4 subsets of
states. States in K0 are enclosed using the squares.

Figure 2a shows a fraction of a gridworld. A robot
moves in this gridworld with uncertainty in different terrains
(‘grass’, ‘sand’, ‘gravel’ and ‘pavement’). In each terrain and
for robot’s different action (heading north (‘N’), south (‘S’),
west (‘W’) and east (‘E’)), the probability of arriving at the
correct cell is 0.9 for pavement, 0.85 for grass, 0.8 for gravel
and 0.75 for sand. With a relatively small probability, the
robot will arrive at the cell adjacent to the intended one.
Figure 2b displays a 20 × 20 gridworld. The grey area and
the boundary are walls. If the robot runs into the wall, it will
be bounce back to its original cell. The walls give rise to a
natural partition of the state space, as demonstrated in this
figure. If no explicit modular structure in the system can be
found, one can compute a decomposition using the method
in section III-B. In the following example, the wall pattern
is the same as in the 20× 20 gridworld.

A. Discounted-reward case

We select a subset W of cells as “restricted area” and a
subset G of cells as “targets”. The reward function is given:
For s ∈ S, S /∈ G ∪ W , R(s, a) = −1 counts for the
amount of time the robot takes action a. For s ∈W , for all
a ∈ A(s), R(s, a) = −1000. For s ∈ G, R(s, a) = 100 for
all a ∈ A(s). Intuitively, this reward function will encourage
the robot to reach the target with as fewer expected number
of steps as possible, while avoiding running into a cell in the
restricted area. We select γ = 0.9.

Case 1: To show the convergence and correctness of the
distributed optimization algorithm, we first consider a 100×
100 gridworld example that can be solved directly with a
centralized algorithm. Since at each cell there are four actions
for the robot to pick, the total number of variables is 4×8220
for the 100 × 100 gridworld (the wall cells are excluded
from the set of states). In this gridworld, there is only 1
target cell. The restricted area include 50 cells. The resulting
LP problem (1) can be solved using CVX, a package for
specifying and solving convex programs [22]. The problem
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Fig. 3: Relative error in the objective value vesus iterations in
100×100 gridworld with discounted reward, under ρ = 1000.
For clarity, we did not draw the relative error for the initial
2000 steps, which are comparatively large.

is solved in 4.77 seconds, and the optimal objective value
under the optimal policy given by CVX is 10.

Next, we solve the same problem by decomposing the state
space of the MDP along the walls into 25 regions, each of
which is a 20 × 20 gridworld. This partition of state space
yields 75 states for each Ki, i > 0 and 720 states for K0. In
which follows, we select ρ = 80, 100, 200, 500, 1000 to show
the convergence of the distributed optimization algorithm.
Irrespective of the choices for ρ, the average time for each
iteration is about 0.16 sec. The solution accuracy relative to
CVX is summarized in Table I. The ‘rel. error in objval’
is the relative error in objective value attained, treating the
CVX solution as the accurate one, and the infeasibility is
the relative primal infeasibility of the solution, measured by
‖Ax∗−b‖2
1+‖b‖1 . Figure 3 shows the convergence of the algorithm.

Case 2: Since a centralized method does not scale, for
a 1000 × 100 gridworld, the centralized method in CVX
fails to produce a solution. Thus, we solve it using the
decomposition and distributed synthesis method. In this
example, we partition the gridworld such that each region
has 50 × 50 cells, which results in 40 regions. There are
1160 states in K0 and about 2005 states in each Ki, for
i = 1, . . . , 40. In this example, we randomly select 40 cells
to be the targets and 40 cells to be the restricted areas.
By choosing ρ = 1000, εrel = 10−6, εabs = 10−6, the
optimal policy is solved within 25342 seconds and it takes
about 2.6 seconds for one iteration. The total number of
iterations is 9747. Under the (approximately)-optimal policy
obtained by distributed optimization, the objective value is
138.73. The relative primal infeasibility of the solution is
0.29×10−4. Figure 4a shows the convergence of distributed
optimization algorithm. A solution with a small infeasibility
in this case can be that for some state, the probabilities
of selecting all actions do not sum to 1. During planning,
through normalization one can compute a randomized policy.

B. Average-reward case with quantative LTL objectives

We consider a 50 × 50 gridworld with no obstacles and
4 critical regions labeled “R1” , “R2”, “R3” and “R4”. The
system is given a temporal logic specification ϕ := �♦(R1∧
♦R2)∧�♦(R3∧♦R4), i.e., the robot has to always eventually
visit region R1 and then R2, and also always eventually
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Fig. 4: Objective value vesus iterations in (a) 1000 × 100
gridworld (the initial 500 steps are omitted). (b) Objective
value vesus iterations in 50 × 50 gridworld with a Büchi
objective. Here we only show the first 1000 iterations as the
objective value converges to the optimal one after 1000 steps.

visit region R3 and then R4. The number of states in the
corresponding DBA is 14 after trimming the unreachable
states, due to the fact that the robot cannot be at two cells
simultaneously. The quantitative objective is to maximize the
frequency of visiting all four regions (an accepting state in
the DBA). The formulated MDP is ergodic and therefore our
method for average-reward problems applies.

Given ρ = 1000, εref = 10−5 and εabs = 10−5, γ =
0.98, the distributed synthesis algorithm terminates in 14284
iteration steps and the optimal discounted reward is 0.9998.
Scaling by 1 − γ = 0.02, we obtain the average reward
0.9998 × 0.02 = 0.02, which is the approximately optimal
value for this average reward under the obtained policy. The
convergence result is shown in Figure 4b and the infeasibility
measure of the obtained solution is 0.016.

VII. CONCLUSION

For solving large Markov decision process models of
stochastic systems with temporal logic specifications, we
developed a decomposition algorithm and a distributed syn-
thesis method. This decomposition exploits the modularity in
the system structure and deals with sub-problems of smaller
sizes. We employed the block splitting algorithm in dis-
tributed optimization to cope with the difficulty of combining
the solutions of sub-problems into a solution to the original
problem. Moreover, the formal decomposition-based dis-
tributed control synthesis framework established in this paper
facilitates the application of other distributed and parallel
large-scale optimization algorithms [24] to further improve
the rate of convergence and the feasibility of solutions for
control synthesis in large MDPs. Recall that although the
decomposition algorithm applies to MDPs with Planar graph
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TABLE I: Relative resolution accuracy for the 100× 100 gridworld with discounted reward (εabs = 10−5, εrel = 10−4).

ρ 80 100 200 500 1000
Iterations 12001 11014 13868 11866 12733

objval 9.54 9.90 9.89 9.96 9.96
rel. error (%) 4.6 1.0 1.1 0.38 0.38
infeasibility 2.7× 10−3 2× 10−3 0.885× 10−3 0.45× 10−3 0.23× 10−3

structure, for more general MDPs, decompositions can also
be generated with heuristics and from the modular structure
of the system. In the future, we will develop an interface to
PRISM toolbox [8] with an implementation of the proposed
decomposition and distributed synthesis algorithms.

APPENDIX

At the k-th iteration, for i, j = 0, . . . , N ,

y
k+1/2
i := proxfi(y

k
i − ỹki ) = bi,

x
k+1/2
j := proxgj (xkj − x̃kj )

= projRmj
+

(xkj − x̃kj − cj/ρ),

(x
k+1/2
ij , y

k+1/2
ij ) := projij(x

k
j − x̃kij , ykij + ỹki ),

xk+1
j := avg(x

k+1/2
j , {xk+1/2

ij }Ni=0),

(yk+1
i , {yk+1

ij }
N
j=0) := exch(y

k+1/2
i , {yk+1/2

ij }Nj=0),

if i = 0,

(yk+1
i , {yk+1

i0 , yk+1
ii }) := exch(y

k+1/2
i , {yk+1/2

i0 , y
k+1/2
ii }),

if i = 1, . . . , N,

x̃k+1
j := x̃kj + x

k+1/2
j − xk+1

j ,

ỹk+1
i := ỹki + y

k+1/2
i − yk+1

i ,

x̃k+1
ij := x̃kij + x

k+1/2
ij − xk+1

j ,

where projRmi
+

denotes the projection to the nonnegative
orthant, projij denotes projection onto {(x, y) | y =
Aijx}. avg is the elementwise averaging 4; and exch is
the exchange operator, defined as below. exch(c, {cj}Nj=1)

is given by yij := cj + (c −
∑N
j=1 cj)/(N − 1) and

yi := c − (c −
∑N
j=1 cj)/N − 1. The variables can be

initialized to 0 at k = 0. Note that the computation in each
iteration can be parallelized. The iteration terminates when
the stopping criterion for the block splitting algorithm is met
(See [12] for more details). The solution can be obtained
x∗ = (x

k+1/2
0 , . . . , x

k+1/2
N ).
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